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Introduction
Research environment: HM (www.hm.edu), ISES (ises.hm.edu) and LMRES (lmres.ee.hm.edu)

HM – Munich University of Applied Sciences
• 14 departmens
• >18.000 students
• ~480 professors
• 3 campuses

ISES – Institute for Sustainable Energy Systems
• 6 research labs (6 professors)
• 27 PhD candidates

LMRES – Laboratory for Mechatronic and Renewable Energy 
Systems

• International team 
• 13 PhD candidates (status 2023)
• >150 publications / >5.4 Mio. € raised
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Introduction
LMRES – Research projects and research goals

Intelligent 
components & systems

(efficient, functional,  modular, fault-tolerant, 
reliable & robust, safe & secure)

Specification, design 
& (construction)

(generic, easy, fast, optimal, multi-
criteria optimization)

Modelling
(nonlinear, switching, hybrid, 
dynamic, physics-based state 

space modelling)

System identification 
& self-commissioning

(real-time applicable, robust, fault-
aware, self-learning)

Control
(linear, nonlinear, adaptive, 
fault-tolerant, self-learning, 

optimal, predictive)

Operation 
management

(intelligent, optimal, 
efficient self-learning)

Additional 
functionality

(e.g. active noise 
cancellation/suppression)

Generic development 
framework (tool chain) 
for: 
• Power electronics
• Electrical machines
• Filters
• Mechatronics
• Renewables
• …
• (Grids)
• (Digital twins of  

systems of systems) 
• …
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Introduction
LMRES – Interdisciplinary expertise & publications
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(b) Regime IV: Full fluid lubrication.

Fig. 11.4: Cross-section of contact surfaces between mechanical parts A & B for lu-
brication regimes III & IV.
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Introduction
LMRES – Selected research results: Electrical/industrial/traction drives (reliability) [115]

6746 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 66, NO. 9, SEPTEMBER 2019

Postfault Full Torque–Speed Exploitation of Dual
Three-Phase IPMSM Drives

Hisham M. Eldeeb , Ayman S. Abdel-Khalik , Senior Member, IEEE,
and Christoph Michael Hackl , Senior Member, IEEE

Abstract—This paper exploits the torque–speed operat-
ing limits of a dual three-phase interior permanent magnet
synchronous machine (ADT-IPMSM) during postfault oper-
ation for different neutral configurations. To achieve the
maximum permissible torque–speed limits, the study pro-
poses software and hardware modifications to the latest
fault-tolerant techniques using: an offline optimization that
takes into account simultaneously the voltage and current
constraints during postfault operation and a simple hard-
ware addition that modifies the neutral points configura-
tion to either isolatede (1N) or connected (2N) based on
the operating torque and/or speed. Compared to the liter-
ature, the proposed study considers the field-weakening
operation, extending the permissible achievable speeds.
A 2.5-kW ADT-IPMSM prototype validates the theoretical
findings.

Index Terms—Dual three phase, fault-tolerance, interior
permanent magnet synchronous machine (IPMSM), post-
fault control.

NOMENCLATURE

Notation
R, N Set of real and natural numbers.
n, m ∈ N Number of rows and columns.
ζ ∈ R Real scalar.
ζ ∈ Rn Real vector (bold), expressed as ζ =

(ζ1 , ζ2 , . . . , ζn )�.
||ζ|| Euclidean norm of ζ.
||ζ||∞ The maximum norm of ζ, i.e., ||ζ||∞ =

max{|ζ1 |, |ζ2 |, . . . , |ζn |}.
Z ∈ Rn×m Real n×m matrix (capital bold).

Manuscript received April 27, 2018; revised July 26, 2018 and Septem-
ber 5, 2018; accepted October 26, 2018. Date of publication November
15, 2018; date of current version April 30, 2019. This work was supported
by the Project AWESCO (H2020-ITN-642682) funded by the European
Union’s Horizon 2020 research and innovation program under the Marie
Sklodowska-Curie under Grant Agreement 642682. (Corresponding au-
thor: Hisham M. Eldeeb.)

H. M. Eldeeb and C. M. Hackl are with the Munich University of Applied
Sciences, 80335 München, Germany, and also with the CRES Research
Group at the Technical University of Munich, 80333 München, Germany
(e-mail:,hisham.eldeeb@hm.edu; christoph.hackl@hm.edu).

A. S. Abdel-Khalik is with the Electrical Engineering Department,
Faculty of Engineering, Alexandria University, Alexandria 21544, Egypt
(e-mail:,ayman.abdel-khalik@alexu.edu.eg).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIE.2018.2880698

Subscripts and superscripts
�� Transpose operator applied to vector or matrix.
�̄ Phasor description of a variable at steady state.
�s Subscript “s” denotes referencing to the stator.

�Λλ
s Superscripts “Λ” and “λ” are arbitrary

variables representing the coordinates of
a subspace (Λ ∈ {dq, XY, 0+0−}, λ ∈
{dq, XY, 0+0−}, and Λ �= λ).

General

T VSD ∈ R6×6 Vector space decomposition matrix.

T p(φ) ∈ R2×2 Park’s transformation with angle φ ∈ R.
T k ∈ R6×2 Optimization matrix.
kαΓ , k

β
Γ Scalar optimization parameters in T k of the

Γ ∈ {X, Y } coordinate.
J ∈ R2×2 Rotation matrix.
u Electrical voltage (V).
i Electrical current (A).
ψ Flux linkage (Wb).
ζa1 →c2

s ∈ R6 Stator space vector expressed in the (a1b1c1-
a2b2c2) frame, where ζ ∈ {u,ψ, i}).

udc DC-link voltage (V).
me Electromechanical torque (N·m).
me,max Maximum torque for a given neutral point con-

figuration (N·m).
mload Load torque (N·m).
np Pole-pair number.
ωe Electrical angular speed (rad/s).
ΩMTPA

e Speed trajectories per every permissibleme of
the MTPA criteria (rad/s).

ΩFW
e Speed trajectories per every permissibleme of

the FW criteria (rad/s).
ωFW

e,max Maximum speed within the ΩFW
e loci (rad/s).

φe Electrical angular position referred to refer-
ence flux axis of phase a1 (rad).

ν Viscous friction coefficient (N·m·s).
mc Coulomb friction torque (N·m).
mfric Total friction torque (N·m).
Θ Mechanical inertia (kg·m2).
Rs Stator electrical resistance (Ω).
LΛλ

s ∈ R2×2 Inductance matrix of the Λλ subspace (H).
Lds , L

q
s Inductance of the d- and q-axis (H).

Ldqm Cross-coupling inductance of the dq subspace
(H).

0278-0046 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 5. Postfault idqs loci comparison between the presented postfault algorithm in [7] and proposed optimization in Section III-C, which covers
additionally the FW region of (a) 1N and (b) 2N neutral configurations.

Fig. 6. Postfault comparison of the permissible (me , ωe ) characteristics between the presented algorithm in [7] and proposed optimization in
Section III-C with respect to the (a) 1N and (b) 2N neutral configurations, showing the enhancement in terms of extending the permissible speed
ranges.

Fig. 7. Postfault efficiency maps of (a) 1N and (b) 2N connections within the (me , ωe ) range of the proposed optimization in Section III-C.

effect of varying Rs (i.e., due to aging or overheating) would
not lead to different outcomes than those presented shortly in
Section III-D. This is due to the fact that practical multiphase
machines address high power applications with negligible stator
resistance compared with the machine stator impedance.

D. Torque–Speed Characteristics

Upon completing the proposed optimization in Section III-C,
the relation between the permissible torques, speeds, currents,

and the corresponding parameters in T k can be graphically
represented as shown in Figs. 5–9, respectively. Figs. 5(a) and (b)
highlight in � the postfault FW permissible region of the 1N and
2N connections, respectively. The current loci indicated by “∗”
represent the corresponding loci when applying the algorithm
in [7]. The derating is clear with respect to the prefault (i.e.,
healthy) case.

The fact that the 1N connection covers a larger operating area
within the dq current loci in Fig. 5(a), in comparison with the
2N connection in Fig. 5(b), adheres to the drawn conclusions
in [5]–[7]. Defining me,max as the MT for a given neutral point
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Introduction
LMRES – Selected research results: Wind energy systems & power electronics (reliability; VDE Award) [78]

2966 IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 34, NO. 3, MARCH 2019

Modeling and Control of Permanent-Magnet
Synchronous Generators Under Open-Switch

Converter Faults
Christoph M. Hackl , Senior Member, IEEE, Urs Pecha , and Korbinian Schechner

Abstract—The mathematical modeling of open-switch faults in
two-level machine-side converters and the fault-tolerant current
control of isotropic permanent-magnet synchronous generators are
discussed in this paper. The proposed converter model is generic
for any open-switch fault and independent of the operation mode of
the electrical machine. The proposed fault-tolerant current control
system gives improved control performance and reduced torque
ripple under open-switch faults by modifying the antiwindup strat-
egy, adapting the space-vector modulation scheme, and by injecting
additional reference currents. The theoretical derivations of model
and control are validated by comparative simulation and measure-
ment results.

Index Terms—Antiwindup (AW), current control, d-current
injection, fault tolerance, field-oriented control (FOC), flat-top
modulation, open-switch fault, permanent-magnet synchronous
generator (PMSG), wind turbine systems.

Notation: N,R: natural and real numbers. x :=
(x1 , . . . , xn )� ∈ Rn : column vector, n ∈ N where “�”
and “:=” mean “transposed” and “is defined as.” In :=
diag(1, . . . , 1) ∈ Rn×n : identity matrix. On×p ∈ Rn×p : zero
matrix, n, p ∈ N. x ∈ Rn (in X)n : physical quantity x where
each of the n elements has SI unit X. mod (x, y): remain-
der of the division x/y, x ∈ R, y ∈ R\{0}. atan2: R2 →
[−π, π), (x, y) → atan2(y, x): extension of the inverse tan-

gent function to whole circle. T c := 2
3

[
1 − 1

2
− 1

2

0

√
3
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3

2

]
and T−1

c :=

3
2

[
2
3

− 1
3

− 1
3

0

√
3

3
−

√
3

3

]�
: Clarke transformation matrix and its inverse.
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T p(φ) :=
[

c o s (φ ) − s in (φ )
s in (φ ) c o s (φ )

]
=: T p(−φ)−1 : Park transformation

matrix. J =
[

0 −1
1 0

]
: rotation matrix.

I. INTRODUCTION

O PEN-SWITCH faults in converters for electric drives have
gained increasing attention in the last years. An open-

switch fault can be caused by thermic cycling, driver failures, or
by a rupture of the insulated-gate bipolar transistor (IGBT) that
is induced by a short-circuit fault [1]. Unlike a short-circuit fault,
an open-switch fault does usually not trigger a system shutdown,
but degrades the system performance and can cause—without
proper counteractions—secondary faults in other components
(see [2] and [3]). Open-switch faults are therefore a crucial kind
of faults in converters and should be considered in the design of
a robust and fault-tolerant (hence more reliable) electrical drive
system.

This far, especially, the detection of faults in the converter
and the identification of the faulty switch have been the focus
of research. Various detection methods have already been pre-
sented [1]–[9]. Therefore, fault detection is not the topic of this
paper.

The focus of this paper is on a fault-tolerant modification
of the control system such that, even in the presence of an
open-switch fault in the machine-side converter, a continuous
operation of the turbine is feasible. This is of particular interest
for offshore wind turbine systems, where maintenance is ex-
pensive and depends on the weather conditions (e.g., whether
ship can access the turbine or not). With a fault-tolerant con-
trol system (as proposed in this paper), the wind turbine can
still be used until regular maintenance is planned or weather
conditions are good. So, instead of having to shut down the gen-
erator and producing no electricity at all, the turbine can still be
operated and will contribute to energy production reducing the
financial loss. Without adequate fault-tolerant modifications, the
faulty converter will cause increased losses and large torque rip-
ples/oscillations, which will harm the mechanical components
and the generator of the wind turbine [10].

To analyze the impact of open-switch faults, a model of the
faulty converter has been proposed in [11]–[13]. The model de-
termines the phase voltages of the electric machine connected
to the faulty converter by using so-called pole voltages of the
converter. If there is an open-switch fault in one of the switching

0885-8993 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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Fig. 13. Comparison of simulation and measurement results for standard control system and fault-tolerant control system with extended AW, modified
SVM (flat-top modulation), and optimally injected d-current. (a) Experiment (E1 ): Comparison of simulation and measurement results for standard control
system: THDias

= 41.8 % (simulation) versus THDias ,meas = 45.4 % (measurement). (b) Experiment (E2 ): Comparison of simulation and measurement results
for fault-tolerant control system: THDias

= 9.4 % (simulation) versus THDias ,meas = 10.6 % (measurement).

as described in the previous sections. Both drives are controlled
by a dSPACE real-time system, which applies the switching
signals (switching vectors) to the respective inverter/converter.
Both converters are connected back to back. The PMSG con-
verter is modified such that each upper and lower switch
can be addressed individually and allows to emulate open-
switch faults. For all experiments, without loss of generality,
open-switch faults in S1 (phase a) were considered, simulated,
and emulated.

The implementation for simulations and measurements
was performed using MATLAB/Simulink. In Fig. 12, the
block diagram of the implementation is shown. The param-
eters of the laboratory setup are listed in Table II (where
Θ = ΘRSM + ΘPMSG ) and coincide with those used for the
simulations. Note that the measured currents were filtered (by
an analog filter in the converter) and, then, sampled with the
switching frequency, whereas the simulated currents were not
filtered.

B. Discussion of Experiments

1) Experiment (E1): The simulation and measurement
scenario of this experiment is as follows: The PMSG-side
converter emulates an open-switch fault in S1 and the standard
control system (as described in Section III-A) was implemented.
Simulation and measurement results of Experiment (E1) are
shown in Fig. 13(a). The measured quantities are labeled with

the additional subscript “meas.” Obviously, simulation and
measurement results match very closely. Hence, the proposed
mathematical model (8) is valid and allows to simulate the
behavior of the real system precisely. Note that, due to the
smaller power rating of the RSM, the speed controller for the
RSM is not capable to compensate for the large torque/current
ripples induced by the faulty PMSG converter.

2) Experiment (E2): For this experiment, again an open-
switch fault in S1 (phase a of the PMSG) is emulated; but this
time, the fault-tolerant control system (extended FOC, as pro-
posed in Section III-B) with extended AW, flat-top modulation,
and optimal ids -injection (with ϕ0 = 197◦) is implemented for
simulation and measurement. Fig. 13(b) shows the comparative
simulation and measurement results. Again, simulation and
measurement results match very closely. Moreover, also the
THD values THDias = 9.4% and THDias ,meas = 10.6% are
almost identical. In conclusion, the proposed modifications are
also effective in real world and the outcomes of the theoretical
and simulative analysis in Section III-B are confirmed.

3) Experiment (E3): For the last experiment, the measure-
ment scenario comprises a sequence of events [see Fig. 14] as
follows:

1. time interval: standard control system (without open-
switch fault/fault-free case);

2. time interval: standard control system under open-switch
fault in S1 ;
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Introduction
LMRES – Selected research results: Traction drives & power electronics (efficiency; Cooperation with BMW) [128]
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Synchronous Optimal Pulsewidth Modulation
for Synchronous Machines With Highly

Operating Point Dependent Magnetic Anisotropy
Athina Birda , Joerg Reuss , and Christoph M. Hackl , Senior Member, IEEE

Abstract—The performance of synchronous optimal
pulsewidth modulation is investigated for the control of
an automotive low voltage electrical drive system, which
consists of a two-level voltage source inverter and an in-
terior permanent magnet synchronous motor. The machine
magnetic anisotropy varies due to magnetic saturation and
cross-saturation effects and depends on the motor operat-
ing point. The main objective of this article is to investigate
the influence of the varying magnetic anisotropy on the
optimized half-wave symmetric inverter pulse patterns. For
this purpose, the optimized inverter switching angles are
derived by minimizing the current harmonic distortion of an
isotropic and anisotropic permanent magnet synchronous
motor. Their performance is evaluated and compared by
experimental results.

Index Terms—Electric vehicle, magnetic anisotropy, per-
manent magnet synchronous motor (PMSM), synchronous
optimal pulsewidth modulation (SOPWM).

I. INTRODUCTION

A S PART of the global effort to reduce the CO2 emissions,
the interest of the automotive industry over the last years

focused on the concept of electric mobility. Still, the limited op-
erating range and increased price of electric vehicles remain the
most important obstacles for their wide spread. The efficiency
of the electrical drive system and, by that, the operating range
of electric vehicles can be improved by optimizing the inverter
and motor power losses.

Inverter-fed ac motors face significant current waveform qual-
ity deterioration due to their operation in switched mode. The
current waveform quality can be enhanced by increasing the
inverter switching frequency. However, this entails increased
switching losses. To overcome this, the concept of synchronous
optimal pulsewidth modulation (SOPWM) has been developed
[1]–[4], which allows to reduce the switching frequency without

Manuscript received November 28, 2019; revised February 7, 2020
and March 4, 2020; accepted March 16, 2020. Date of publication
April 6, 2020; date of current version January 27, 2021. (Corresponding
author: Athina Birda.)

Athina Birda and Joerg Reuss are with the Bayerische Motoren
Werke Aktiengesellschaft, 80335 Munich, Germany (e-mail: athina.
birda@bmw.de; joerg.reuss@bmw.de).

Christoph M. Hackl is with the Laboratory for Mechatronics and Re-
newable Energy Systems, the Munich University of Applied Sciences,
80788 Munich, Germany (e-mail: christoph.hackl@hm.edu).

Color versions of one or more of the figures in this article are available
online at http://ieeexplore.ieee.org.
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compromising the motor current quality. To this end, the opti-
mized inverter pulse patterns are determined, which minimize
the harmonic distortion of the phase currents. The optimiza-
tion procedure is conducted offline and the resulting optimized
switching angles are stored in lookup tables (LUTs). Since the
switching frequency fsw is synchronized with the fundamental
stator frequency fr, the pulse number

q := fsw/fr (1)

is always an integer [1].
SOPWM is primarily employed in medium voltage high

power induction motor drive applications, where the reduction
of switching losses is of utmost importance [1], [2]. Moreover,
it is a common modulation strategy for operating electric rail
traction converters adopted by GE [3] and SIEMENS [4]. On the
contrary, little research has been conducted when the SOPWM
strategy is employed for the control of synchronous motor
drives [5]–[13]. Especially, SOPWM has not yet been explored
for automotive low-voltage interior permanent magnet syn-
chronous motor (IPMSM) drives with highly operating point
(OP) dependent magnetic anisotropy. This is the main motivation
of this article.

In [5]–[7], the current harmonic content of an isotropic
permanent magnet synchronous motor (PMSM) drive is min-
imized. The same objective function is adopted in [8] for a
salient pole PMSM ignoring its anisotropic properties. How-
ever, this formulation cannot properly describe the harmonic
current of an anisotropic PMSM. Improved optimization criteria
for separately excited synchronous motors have been proposed
in [9]–[11], which take the anisotropic properties into account in
the optimization of the inverter pulse patterns. Although these
criteria can also be applied to salient pole PMSMs, they are
derived assuming that the load angle is zero. Consequently, the
influence of the load angle on the PMSM current harmonics
cannot be examined by these performance indices.

Recent publications [12], [14] present analytical expres-
sions for a salient pole PMSM harmonic current with respect
to machine saliency ratio and voltage phase angle. In [12],
PWM waveforms with different symmetry properties are in-
vestigated. The results demonstrate that the abolishment of the
quarter-wave symmetry leads to improved or the same current
harmonic quality. Lastly, a new current harmonic evaluation
index is proposed in [13] based on the analysis of [14] using

0278-0046 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Hochschule Muenchen. Downloaded on December 26,2021 at 10:46:43 UTC from IEEE Xplore.  Restrictions apply. 

BIRDA et al.: SYNCHRONOUS OPTIMAL PWM FOR SYNCHRONOUS MACHINES 3765

Fig. 7. Optimized inverter switching angles for different values of m,
θU and λ when q = 5.

Fig. 8. Signal flow diagram of the calculation of Is,THD,dev.

operating range considering the motor phase current harmonic
distortion. To this end, Is,THD(α) in (16) will be specified for
each motor OP using αiso and αaniso and the performance of the
two pulse patterns will be compared by the following percentage
deviation factor:

Is,THD,dev := 100
Is,THD(αiso) − Is,THD(αaniso)

Is,THD(αaniso)
. (19)

Fig. 8 illustrates the signal flow diagram of the Is,THD,dev

calculation. The motor is operated according to the maximum
torque per ampere (MTPA) and maximum torque per voltage
(MTPV) strategies [19], [20]. The optimal reference currents

Fig. 9. Numerical performance evaluation of the optimization results.
(a) Is,THD(αaniso)/%. (b) Is,THD,dev/%.

and machine magnetic properties are derived based on a finite-
element analysis. The reference currents ik

s,ref are chosen from
LUTs based on (T, nm) and determine the machine parameters
Ld

s , Lq
s, ψPM and λ (see Table I and Fig. 6). The reference volt-

ages can then be specified using the PMSM voltage equations
in steady-state operation, i.e.,

uk
s,ref =

⎡
⎣ Rs −ωrL

q
s

ωrL
d
s Rs

⎤
⎦ ik

s,ref +

⎛
⎝ 0

ωrψPM

⎞
⎠ . (20)

The optimized inverter switching angles are chosen based on the
values of m, θU , and λ. The current harmonic distortion factors
can then be calculated using (16) and (19). This procedure is
repeated for the whole torque-speed range of the IPMSM where
the SOPWM is employed with a step of 2 N·m and 100 r/min,
respectively.

Fig. 9(a) shows the resulting Is,THD(αaniso) when the pulse
pattern αaniso is utilized for the control of the anisotropic
IPMSM, while Fig. 9(b) illustrates the resulting deviation
Is,THD,dev in the current harmonic distortion when αiso is
used for the control of the same machine. The discontinuity at
nm = 9000 r/min is due to the change in the pulse number from
q = 9 to q = 5 at this location (see Fig. 5). It should be empha-
sized that Is,THD,dev>0, i.e., Is,THD(αaniso) < Is,THD(αiso),
in the whole operating range. As expected, the performance of
αaniso is superior to that of αiso considering the current har-
monic quality of an anisotropic IPMSM. The deviation between
Is,THD(αaniso) and Is,THD(αiso) can reach values of more than
26% in some OPs [see red regions in Fig. 9(b)].

VI. EXPERIMENTAL VALIDATION

In Section V, Is,THD(α) has been numerically determined
for the whole operating range using αiso and αaniso. In this
section, the above simulative analysis will be validated by ex-
perimental results in six OPs. The SOPWM is integrated into
a field oriented control scheme with closed-loop proportional
integral (PI) current control according to the implementation
strategy presented in [22]. The control system is implemented
on a dSpace AutoBox with DS1007 processor board and only the
modulator is implemented on the DS5203 field-programmable
gate array (FPGA) board. The same modulator is used for both
SVM and SOPWM schemes and the FPGA clock frequency is
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Nonlinear Modeling, Identification, and Optimal
Feedforward Torque Control of Induction

Machines Using Steady-State
Machine Maps

Julian Kullick and Christoph M. Hackl , Senior Member, IEEE

Abstract—A novel but simple machine map-based mod-
eling, identification, and optimal feedforward torque control
(OFTC) approach for induction machines (IMs) is presented.
It is based on, first, a generic, nonlinear transformer-
like machine model considering nonlinear flux linkages
(with magnetic saturation and cross coupling) and iron
losses in the stator laminations in a novel, arbitrarily ro-
tating but unique, robust, and reproducible (d, q)-reference
frame; second, a holistic machine identification procedure,
which evaluates steady-state measurements over a grid of
(d, q) stator currents and produces temperature and fre-
quency dependent machine maps, for example, flux link-
ages, torque, iron resistance, and efficiency; and third, a
numerical offline optimization and extraction of different
OFTC look-up tables (LUTs) for optimal current reference
generation depending on reference torque and electrical
frequency (and temperature). During the identification, sta-
tor winding temperature and electrical stator frequency of
the IM are kept constant by an intelligent temperature and
the speed control system. The presented measurement re-
sults for a squirrel-cage IM confirm that compared to con-
stant flux operation or scalar V/Hz control, efficiency can be
increased particularly in part-load operation by up to 7% by
Maximum Torque Per Losses minimizing copper and iron
losses.

Index Terms—Efficiency, flux linkages, induction ma-
chine (IM), iron resistance, machine identification, MTPA,
maximum torque per current (MTPC), maximum torque per
loss (MTPL).

NOTATION

N, R: natural, real numbers; x :=(x1, . . . , xn)� ∈ Rn: col-
umn vector, n ∈ N where “�” and “:=” mean “transposed”
and “is defined as,” resp.; a�b :=a1b1 + ṡ + anbn: scalar prod-
uct of vectors a & b; a‖b: vectors a & b are parallel;
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2022; date of current version 22 August 2022. (Corresponding author:
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‖x‖ :=
√
x�x =

√
x2

1 + ṡ + x2
n: Euclidean norm of x; X ∈

Rn×n: matrix (n rows & columns); X−1, X−�: inverse, in-
verse transpose of X (if exist), resp.; In :=diag(1, . . . , 1) ∈
Rn×n: identity matrix; 0n :=(0,ṡ, 0)� ∈Rn: zero vector;xdq :=
(xd, xq)� ∈ R2: stator or rotor (iron) current, voltage, flux
linkage vectors, i.e., x ∈ {idq

s/r(,Fe),u
dq
s/r,ψ

dq
s/r, ṡ}; Xdq :=

⎡
⎢⎣

Xd Xdq

Xqd Xq

⎤
⎥⎦ ∈ R2×2: stator/rotor (iron) resistance matrix,

i.e., Rs/r(,Fe); ϑs/r: stator/rotor temperature; xref: reference
value of, e.g., temperature, electrical frequency, and currents,
i.e., x ∈ {ϑs,ref, ωp,ref, i

d
s,ref, i

q
s,ref, ṡ}; Tr/f : rotor/filter time con-

stant; np: pole pair number; mm/l: machine/load torque; Θm:
machine inertia; ωm: mechanical angular velocity; φp and
ωp = d

dtφp: Park transformation angle and angular velocity;

J :=

⎡
⎢⎣
0 −1

1 0

⎤
⎥⎦: rotation matrix (by π

2 ).

I. MOTIVATION AND CONTRIBUTIONS

Maximum efficiency operation (or loss minimizing control)
of induction machines has been subject to extensive research in
the past. In contrast to look-up table (LUT)-based direct torque
control (see, e.g., [1]), for vector control, the following two main
approaches are typically distinguished: 1) offline calculation
of optimal references (e.g., [2]–[4]) or 2) search-based online
techniques (e.g., [5]–[8]).

The objective is to compute optimal reference currents (set
points) for a given reference torque while complying with phys-
ical constraints (e.g., current and voltage limits) and minimiz-
ing losses. This problem is known as the optimal feedforward
torque control (OFTC) problem [9], [10]. Depending on the
optimization objective, different OFTC strategies are obtained,
e.g., maximum torque per current (MTPC), minimizing the
copper losses in the machine, or maximum torque per voltage
(MTPV), minimizing the stator voltage magnitude. As an exten-
sion to these “classical” OFTC strategies (for IMs, see, e.g. [2],
[5], [11]), maximum torque per losses (MTPL) (or maximum
efficiency per torque) considers and minimizes copper and iron
losses to maximize the overall machine efficiency (for IMs see,
e.g., [4], [7], [8], [12], [13]).

0278-0046 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 11. OFTC LUTs LM

i
d/q

s,ref

over electrical frequency ωp ∈ [0.1, 1.5] · ωp,N and reference torque mm,ref ∈ [0, 1] · mm,N. (a) MTPL d-current. (b)

MTPC d-current. (c) CF d-current. (d) V/Hz d-current. (e) MTPL q-current. (f) MTPC q-current. (g) CF q-current. (h) V/Hz q-current.

Fig. 12. Efficiency comparison for ωp ∈ [0.2, 0.6, 1] · ωp,N (from top to bottom), with efficiency contour plots in current locus (left column),
efficiency-over-torque plots (middle column) and overall performance bar plots (right column).
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ABSTRACT Physically motivated and analytical prototype functions are proposed to approximate the
nonlinear flux linkages of nonlinear synchronous machines (SMs) in general; and reluctance synchronous
machines (RSMs) and interior permanent magnet synchronous machines (IPMSMs) in particular. Such
analytical functions obviate the need of huge lookup tables (LUTs) and are beneficial for optimal operation
management and nonlinear control of such machines. The proposed flux linkage prototype functions are
capable of mimicking the nonlinear self-axis and cross-coupling saturation effects of SMs. Moreover, the
differentiable prototype functions allow to easily derive analytical expressions for the differential inductances
by simple differentiation of the analytical flux linkage prototype functions. In total, two types of flux linkage
prototype functions are developed. The first flux linkage approximation is rather simple and obeys the energy
conservation rule for “symmetric” flux linkages of RSMs. With the gained knowledge, the second type of
prototype functions is derived in order to achieve approximation flexibility necessary for SMs with permanent
(or electrical) excitation with “unsymmetric” flux linkages due to the excitation offset. All proposed flux
linkage prototype functions are continuously differentiable, obey the energy conservation rule and, as fitting
results show, achieve a (very) high approximation accuracy over the whole operation range.

INDEX TERMS Analytical flux linkage prototype functions, interior permanent magnet synchronous ma-
chine, reluctance synchronous machine, saturation effects.

I. INTRODUCTION
With the developed manufacturing and control techniques
and the increased efficiency requirements, induction machines
(IMs) are more and more replaced by synchronous machines
(SMs) [1]. Reluctance synchronous machines (RSMs) and
permanent magnet synchronous machines (PMSMs) achieve
higher efficiencies and better overall performance.

Except surface-mounted PMSM (SPMSM), both RSM
and interior PMSM (IPMSM) exhibit significant magnetic
saturation [2], [3], resulting in highly nonlinear flux link-
ages which depend on not only the direct-axis current but
also the quadrature-axis current, leading to magnetic cross-
coupling. In order to achieve the best possible drive perfor-
mance, the saturation and cross-coupling effects cannot be
neglected. The effectiveness of developed control algorithms,

e.g., nonlinear current control strategies [4], optimal feed-
forward torque control (OFTC) [5], [6] or model predictive
control [7], is deteriorated by model and parameter uncertain-
ties. In addition, cross-coupling inductances [8] lead to posi-
tion estimation errors in encoderless control. Consequently,
a comprehensive flux linkage (or differential inductance)
model is essential for the control of modern electrical drive
systems.

The magnetic nonlinearity of the flux linkage maps can
normally be extracted (mostly as LUTs) by using finite el-
ement analysis (FEA) or by conducting experiments in the
laboratory. For many application (e.g. industrial drives), FEA
data from the machine manufacturers may not be avail-
able to commissioning or control engineers but—as it is
required for optimal controller tuning and operation of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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FIGURE 10. Approximation results of the proposed analytical flux linkage
prototype functions (40), (41), (46) and (47): (a) fitted d-axis flux linkages
xxψd

s ; (b) fitted q-axis flux linkages xxψq
s ; zero locus Ldq

s (L=0) [ ] is
indicated.

The normalized errors εd
s and εq

s are shown in Fig. 11(a)
and 11(b), respectively. In both error plots, a very good fitting
accuracy with less than 2% approximation errors over the
whole current operation range is achieved. Therefore, the ef-
fectiveness of the developed analytical flux linkage prototype
functions for IPMSMs with proper separation is confirmed.

The differential inductances Ld
s , Lq

s , Ldq
s computed by the

real IPMSM flux linkages are presented in Fig. 12(a), 12(b)
and 12(c), respectively. In Fig. 12(d), 12(e) and 12(f), the
approximated differential inductances L̂d

s , L̂q
s and L̂dq

s , ob-
tained by analytical differentiation of the flux linkage pro-
totype functions in (40), (41), (46) and (47), are shown. For
L̂d

s , bumpy parts in the map near the shared boundary can
be seen due to the slight different values at the border of
the two regions. In general, with higher flux linkage approxi-
mation accuracy, the approximated differential inductances of
IPMSM match the real differential inductances much better
than those of the RSM approximation.

VI. DISCUSSION AND COMPARISON WITH OTHER
STATE-OF-THE-ART APPROXIMATION METHODS
This section discusses and compares important aspects of
prototype functions used in the literature in order to show the

FIGURE 11. Approximation errors of the proposed analytical flux linkage
prototype functions (40), (41), (46) and (47) compared to the real flux
maps: (a) normalized d-axis error εd

s ; (b) normalized q-axis error εq
s .

potential of the developed flux linkage prototype functions.
In Table 1, a comparison of key characteristics/properties of
different prototype functions is shown. The checkmark (�)
indicates that the characteristic/property is covered, whereas
the cross (×) indicates that the characteristic/property is not
covered in the respective publication.

1) Flux linkage maps: Current maps idq
s (ψdq

s ), which
use the flux linkages as state variables, are more
common [12], [14], [15] than flux linkage maps. The
flux-to-current curves saturate similarly as a polynomial
with odd power number. This property of the current
maps motivates for the very common utilization of poly-
nomials as prototype functions. However, the machine’s
stator currents are measured in almost every application.
Therefore, flux linkage maps ψdq

s (idq
s ) are more

practical. In both [11], [16], one-dimensional (1D) flux
linkage curves (lines), i.e. ψd

s (ids ) and ψq
s (iqs ), are devel-

oped. Therefore, the two-dimensional (2D) flux linkage
maps (surfaces) can not be represented by one function
each. They can only be approximated line by line for
different but constant cross-coupling currents (which re-
quires LUT-like interpolation methods). In contrast, 2D
flux linkage prototype functions, which dependent on
both d- and q-axis currents, are developed in [13], [18].
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Modified Second-Order Generalized Integrators With
Modified Frequency Locked Loop for Fast Harmonics

Estimation of Distorted Single-Phase Signals
Christoph M. Hackl , Senior Member, IEEE, and Markus Landerer

Abstract—This article proposes modified second-order general-
ized integrators (mSOGIs) for a fast estimation of all harmonic
components of arbitrarily distorted single-phase signals, such as
voltages or currents in power systems. The estimation is based
on the internal model principle leading to an overall observer
consisting of parallelized mSOGIs. The observer is tuned by pole
placement. For a constant fundamental frequency, the observer is
capable of estimating all harmonic components with prescribed
settling time by choosing the observer poles appropriately. For
time-varying fundamental frequencies, the harmonic estimation is
combined with a modified frequency locked loop (mFLL) with gain
normalization, sign-correct antiwindup, and rate limitation. The
estimation performances of the proposed parallelized mSOGIs with
and without mFLL are illustrated and validated by measurement
results. The results are compared to standard approaches such as
parallelized standard SOGIs (sSOGIs) and adaptive notch filters
(ANFs).

Index Terms—Amplitude estimation, frequency estimation,
frequency-locked loop (FLL), phase estimation, second-order
generalized integrator (SOGI).

Notation

N, R, C, Q: natural, real, complex and rational num-
bers. For the following, let n, m ∈ N. x := (x1, . . . , xn)� ∈
Rn: column vector (where := means “is defined as” and
� means “transposed”). 0n := (0, 0, . . . , 0)� ∈ Rn: zero vec-
tor. ‖x‖ :=

√
x�x: Euclidean norm of x. A ∈ Rn×m: real

(non-square) matrix. diag(a) ∈ Rn×n: diagonal matrix with
diagonal entries taken from vector a = (a1, . . . , an)� ∈ Rn.
blockdiag(A1, . . . ,An) ∈ Rnm×nm: block diagonal matrix
with matrix entries Ai ∈ Rm×m, i ∈ {1, . . . , n}.
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I. INTRODUCTION

A. Motivation and Literature Review

IN VIEW of the increasing number of decentralized gen-
eration units with power electronics-based grid connection

and the decreasing number of large-scale generators, the overall
inertia in the grid is diminishing. This results in faster and
more abrupt frequency fluctuations and significant harmonic
distortion of physical quantities (such as currents or voltages)
of the power system [1]. Fast frequency fluctuations endanger
stability of the power grid. Significant harmonic distortions of
voltages and currents can degrade power quality and lead to
damage or even destruction of grid components. To be capable of
taking appropriate countermeasures such as 1) improving system
stability and power quality and 2) compensating for such dete-
riorated operation conditions, it is crucial to detect and estimate
fundamental and higher harmonic components of the considered
quantities in real time as fast and accurate as possible. Modern
power electronic devices (e.g., flexible ac transmission systems
or grid-connected converters of decentralized renewable energy
systems) can then be used to implement such countermeasures.
That is why, grid state estimation became of particular interest
to the research community in the past years and has been studied
extensively (see e.g., [2]–[24] to name a few).

It is well known that a signal with significant harmonic
distortion can be decomposed and analyzed by the fast fourier
transformation (FFT). However, this method requires a rather
long computational time and a large amount of data to be pro-
cessed [25, p. 320]. Usually, several multiples of the fundamental
period (≥ 200ms) are needed to estimate the harmonics with
acceptable accuracy [7]; when the frequency must be estimated
as well, the estimation time is even longer. For signals with
negligible harmonic distortion, several well known and rather
fast methods are available [26, Ch. 4], such as second-order
generalized Integrator (SOGI) or adaptive notch filters (ANF)
with and without phase-locked loop (PLL) [21] or frequency
locked-loop (FLL) [2], [6]. For signals with significant harmonic
distortion, these approaches fail and have to be extended by the
parallelization of several SOGIs (see e.g., [6]–[8], [13], [24]) or
several ANFs (see e.g., [3], [4]); each of those being capable
of estimating the individual harmonics separately. However, the
resulting estimation system is highly nonlinear (in particular
in combination with FLL or PLL) and difficult to tune. The
estimation speed is usually faster than those of FFT approaches

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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Fig. 10. Measurement results for Scenario (S3): Comparison of the estima-
tion performances of parallelized mSOGIs ( ), sSOGIs ( ), and ANFs
( ) with FLL. Signals shown from top to bottom are: Harmonic estimation
errors e1 = y1 − ŷ1 to e10 = y10 − ŷ10.

For a fair comparison, all three estimation methods are tuned
in such a way that the best feasible estimation performance were
achieved within their respective capability and tuning limits.
All four results will be discussed in more detail in the next
subsections.

A. Discussion of the Measurement Results for Scenario (S1)

For scenario (S1), only a single mSOGI, a single sSOGI, and a
single ANF are implemented for fundamental signal estimation,
respectively. The FLLs were implemented but the adaption was
turned off, respectively. Fundamental and estimated angular

Fig. 11. Measurement results for Scenario (S4): Comparison of the estima-
tion performances of parallelized mSOGIs ( ), sSOGIs ( ), and ANFs
( ) without FLL. Signals shown from top to bottom are: Harmonic signals
y1 to y10 ( ) and their estimates ŷ1 to ŷ10 and harmonic estimation errors
e1 = y1 − ŷ1 to e10 = y10 − ŷ10.

frequency are identical for this scenario. Therefore, the esti-
mation performances purely can be compared according to the
respective observer tunings only. The fundamental signal y = y1

undergoes step-like changes in amplitude, phase and amplitude
and phase as described above.

The estimation performances of fundamental mSOGI ( ),
fundamental sSOGI ( ), and fundamental ANF ( ) are
shown in Fig. 7. The first and second subplots show input signal
y = y1 ( ) and its estimates ŷ = ŷ1 and the estimation errors
ey = y1 − ŷ1, respectively. All three observers are capable of es-
timating the input signal y. All estimation errors ey → 0 tend to
zero after a certain time. The mSOGI ( ) clearly outperforms
the other two estimation methods in estimation accuracy and
estimation speed for all three step-like changes of the input signal
y at t = 0.04, 0.08, and 0.12 s. Estimation is completed in less
than 20 ms. This is possibly due to the additionally introduced
gain g1 which gives the necessary degree of freedom in mSOGI
design (recall discussion in Section II-B). The oscillations within
first (0 ≤ t < 0.04 s) and fourth (0.12 ≤ t ≤ 0.16 s) interval are
identical for all estimation methods and are due to the grid
emulator, which is not able to perfectly produce a constant
amplitude for higher voltage levels.

B. Discussion of the Measurement Results for Scenario (S2)

For Scenario (S2), the respective FLLs for mSOGI, sSOGI,
and ANF [as in Scenario (S1)] are activated now. Signal and
frequency estimation will be compared during this scenario. The
considered fundamental signal y undergoes step-like frequency
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Motivation
Electrical machines: Widely-used, compact and efficient actuators
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‚ household and buildings (e.g. wasching machines, air conditioning or fans)
‚ industrial applications (e.g. pumps, milling, grinding)
‚ traction drives (e.g. electric vehicles, trains, etc.)
‚ power generation (e.g. conventional power plants or wind turbine systems)
‚ (more) electric aircrafts
‚ . . .
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Motivation
Examples of anisotropic synchronous machines [164] with “saliency ratio” Lds {L

q
s ‰ 1

S. MORIMOTO

2. Classification and Features of PMSMs

The torque T and the terminal voltage Va are given
by (1) and (2) using the variables and parameters in the
rotating d − q coordinate.

T = Pn{ψaiq + (Ld − Lq)idiq} (1)

Va =
√

(Raid − ωLqiq)2 + (Raiq + ωLdid + ωψa)2

(2)

where, id , iq are the d and q-axis armature currents,
ω is the electrical angular velocity, Ra , the armature
resistance, ψa , the magnet flux-linkage, Ld , Lq , the d

and q-axis inductances, and Pn is the number of pole
pairs.

The first term in (1) represents the magnet torque due
to the permanent magnet and the second one represents
the reluctance torque derived from the difference between
the d-axis and q-axis inductances. The torque character-
istic is discussed based on (1), and the maximum speed
and the constant power speed range can be examined
by (2).

Figure 2 shows the ratio of magnet torque to reluc-
tance torque for several synchronous machines. The syn-
chronous machines can be classified into three kinds by
the principle of torque production. The surface PMSM
(SPMSM), in which the arc-shaped permanent magnets
are mounted on the surface of a cylindrical rotor core as
shown in Fig. 2 (a), is a pure PM machine, where only
magnet torque is produced. The synchronous reluctance
machine (SynRM) is a pure reluctance machine and it is
not a PMSM (Fig. 2 (f)). The inset SPMSM (Fig. 2 (b))
belongs to the category of SPMSM in the classification
by the magnet arrangement, but it is a PM/reluctance

hybrid machine because it has magnetic saliency. The
interior PMSM (IPMSM), in which the permanent mag-
nets are buried into the rotor core as shown in Fig. 2
(c–e), has magnetic saliency and is a PM/reluctance
hybrid machine. The IPMSM can be classified into a
reluctance torque assisted PMSM (region II) and a per-
manent magnet torque assisted SynRM (region III) by a
torque generating mechanism.

IPMSM has come to be used in various fields because
it has the following advantages in comparison with
SPMSM.

1. The stainless-steel-can, which is usually required in
SPMSM, can be eliminated in the IPMSM and the
rotor surface becomes the laminated core. Therefore,
the eddy current loss on the surface of rotor can be
greatly decreased.

2. The square-shaped permanent magnet can be used for
IPMSM, and it brings about a decrease in magnet cost
compared to the arc-shaped magnet.

3. IPMSM has saliency, where Lq is larger than Ld ,
and the reluctance torque can be effectively utilized
in addition to the magnet torque.

4. The flux-weakening control acts effectively in
IPMSM, and as a result the high-speed operation and
the wide constant-power operation can be achieved.

5. IPMSM has many degrees of freedom in the design
of both mechanical structure and torque-speed charac-
teristics.

3. Design for Improving Efficiency

3.1. Rotor design Increasing the ratio of torque
per current ampere improves efficiency by decreasing the
copper loss. From (1), it is evident that such demand can

SynRMPMASynRMIPMSMInset SPMSMSPMSM

(a) (b) (c) (d) (e) (f)

(2) PM/Reluctance Hybrid Machine

I II III IV

: Magnet torque : Reluctance torque

(1) Pure PM Machine
(3) Pure Reluctance

Reluctance Torque Assisted PMSM PM Torque Assisted SynRM

Increasing magnet flux

Increasing saliency

Machine

Fig. 2 Classification of synchronous machines by torque generating mechanism

102 IEEJ Trans 2: 101–108 (2007)
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ı
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Motivation
Optimal feedforward torque control problem: Isotropic, linear PMSM (without iron losses)

´5´4´3´2´1 0 1 2 3 4 5

´5´4´3´2´1012345

´8
´6
´4
´2
0
2
4
6

mm,ref

ids / Aiqs / A

m
m

/N
m

mm,ref
!“ mm

`
ids , i

q
s

˘ “ 2np

3κ
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2
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Motivation
Optimal feedforward torque control problem: Anisotropic, affine PMSM (without iron losses)
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`
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˘ “ 2np

3κ
2

”
rψpmi

q
s ` `rLds ´ rLqs

˘
ids i

q
s ` rLs,m

`piqs q2 ´ pids q2˘
ı

ùñ idqs,ref :“ p?, ?qJ
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Motivation
Optimal feedforward torque control problem: Identical for all nonlinear machines

Nonlinear IPMSM (3.9 kW@5 500 rpm) Nonlinear IM (3 kW@1 445 rpm)
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2 Advanced optimal feedforward torque control (OFTC) and operation
management of electrical drives
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Problem statement and proposed solution
Optimal feedforward torque control (OFTC) within the control system
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ûs,max

ωp

...

-

ids

ids,ref

-

iqs

iqs,ref

PIids,ref

PIiqs,ref

uds,comp

uds,pi

uqs,comp

uqs,pi

dq

αβ

Inv. Park
uds,ref

uqs,ref

αβ

abc

Inv. Clarke
uαs,ref

uβs,ref

dq

αβ

Park

iαs

iβs

ϕp

αβ

abc

Clarke

ias

ibs

ics

=

∼

Inverter
uas,ref

ubs,ref

ucs,ref

IPMSM

mm

uas

ubs

ucs

mm

Advanced optimal feedforward torque control and operation management of electrical drives
Prof. Dr.-Ing. habil. Christoph M. Hackl

Version from 2023/05/29
17/75



Problem statement and proposed solution
Optimal feedforward torque control (OFTC) problem: Optimal reference current computation (ORCC)

OFTC “ optimal
reference current

computation (ORCC)

mm,ref

pus,max pıs,max
ωp ¨ ¨ ¨

ids,ref (or idr,ref )

iqs,ref (or iqr,ref )

idqs,refpmm,ref , pus,max,pıs,max, ωp, . . . q “
ˆ
ids,refpmm,ref , pus,max,pıs,max, ωp, . . . q
iqs,refpmm,ref , pus,max,pıs,max, ωp, . . . q

˙

✓ Numerical solutions and/or look-up tables
(but: limited storage, accuracy, real-time applicability)

? Analytical solutions
´

some do exist but impose simplifying assumptions such as
((((((((((((((((hhhhhhhhhhhhhhhh
Rs “ 0, Rs,Fe “ 0 and/or Ls,m “ 0, etc.

¯
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Problem statement and proposed solution
Considered anisotropic synchronous machines with iron losses: Nonlinear transformer model

i
dq
s

R
dq
s

ωpJψ
dq
s

d
dtψ

dq
s

u
dq
s

i
dq
s,Fe

R
dq
s,Fe

ωpJψ
dq
s,Fe

d
dtψ

dq
s,Fe

02

with ψdqs “ ψdqs,Fe (single assumption!) and (possibly) nonlinear

‚ current, angle, speed and temperature dependent stator resistance, i.e. Rdq
s :“ R

dq
s pi

dq
s , ϕp, ωp, ϑsq

‚ current, angle, speed and temperature dependent iron resistance, i.e. Rdq
s,Fe :“ R

dq
s,Fepi

dq
s , ϕp, ωp, ϑsq

‚ current, angle, speed and temperature dependent flux linkages, i.e. ψdqs :“ ψ
dq
s pi

dq
s , ϕp, ωp, ϑsq
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Problem statement and proposed solution
Considered anisotropic synchronous machines with iron losses: Nonlinear machine dynamics (ùñ steady-state model)
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Problem statement and proposed solution
Optimal reference current computation (ORCC): Optimization problem(s) with multiple constraints
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BVpωp, pus,maxq

F :“ Vpωp, pus,maxq X Ippıs,maxq

ids / A

iq s
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max
i
dq
s PF

´fpidqs q subject to

$
’’’’’’’’’&
’’’’’’’’’%

∥idqs ∥2 ď pı2s,max,
(current circular area)
∥udqs pidqs , ωp, . . . q∥2 ď pu2s,max,
(voltage elliptical area)
|mmpidqs , ωp, . . . q| ď |mm,ref |,
and signpmm,refq “
signpmmpidqs qq.

ùñ e.g. minimize copper losses,
i.e., ´fpidqs q “ ´∥idqs ∥2.

ùñ idqs,ref “ idqs,MTPC at , i.e., MTPC
with mm,ref “ mmpidqs,refq feasible.
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2 Advanced optimal feedforward torque control (OFTC) and operation
management of electrical drives
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OFTC with analytical ORCC: Analytical computation
Sequential Quadratic Programming (SCP): Linearization, implicit formulation, optimization & intersection points

Step 1: Online linearization of flux linkages, machine torque, iron resistance, etc.: for example:
‚ flux linkages (first-order Taylor approximation around operating point i

dq
s [ ])

‚ machine torque (second-order Taylor approximation around operating point i
dq
s [ ])
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OFTC with analytical ORCC: Analytical computation
Sequential Quadratic Programming (SCP): Linearization, implicit formulation, optimization & intersection points

Step 2: Derivation of quadrics QApidqs q :“ pidqs qJAidqs ` 2aJidqs ` α:

‚ Current circular area: pi
d
s q

2
` pi

q
s q

2
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dq
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OFTC with analytical ORCC: Analytical computation
Sequential Quadratic Programming (SCP): Linearization, implicit formulation, optimization & intersection points

Step 3: Optimization problem with equality constraint

max
i
dq
s

´
´

pidqs qJAidqs ` 2aJidqs ` αlooooooooooooooomooooooooooooooon
“:QApidqs q

¯
s.t. pidqs qJBidqs ` 2bJidqs ` βlooooooooooooooomooooooooooooooon

“:QBpidqs q

“ 0

ùñ Hyperbolas for e.g. MTPC, MTPL or MTPV (with Rs, Rs,Fe ‰ 0 & Ls,m ‰ 0, etc.)

Step 4: Intersection of two quadrics (e.g. voltage ellipse and current circle)

idqs,ref :“ argmin∥idqs ∥

!
idqs P R2

ˇ̌
ˇ QApidqs q “ 0 ^ QBpidqs q “ 0

)

ùñ Optimal operation point (reference current; iteration possibly necessary)

Both lead to subproblem of solving a fourth-order (quartic) polynomial

χpλq :“ c4 λ
4 ` c3 λ

3 ` c2 λ
2 ` c1 λ` c0

!“ 0

ùñ Analytical solutions exist (e.g. Euler’s solution, see [165])
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OFTC with analytical ORCC: Operation strategies
Overview
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‚ Maximum Torque per Losses (MTPL) [ ] (or Maximum Torque per Current (MTPC) [ ])

‚ Maximum Current (MC) [ ] and Maximum Current extended (MCext) [ ]

‚ Maximum Torque per Voltage (MTPV) [ ] (or Maximum Torque per Flux (MTPF)))

‚ Field Weakening (FW) [ ]
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OFTC with analytical ORCC: Operation strategies
Maximum Torque per Current (MTPC @ 0 ¨ ωm,R): Reference torque feasible
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«mmpidqs q
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MTPCpidqs , ωp, . . . q :“
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idqs P R2

ˇ̌

pidqs qJMC i
dq
s ` 2mJ

Ci
dq
s “ 0

(

Optimal reference currents ( )

idqs,MTPC “ MTPC X Tpmm,refq
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OFTC with analytical ORCC: Operation strategies
Maximum Torque per Losses (MTPL @ 1 ¨ ωm,R): Reference torque feasible

´35 ´30 ´25 ´20 ´15 ´10 ´5 0
0

5

10

15

20

25

30

35

Tpmm,refq

BIppıs,maxq
BVppus,maxq

F :“ Vppus,maxq X Ippimaxq

MTPC
MTPL

ids / A

iq s
/A

Optimization problem

max
i
dq
s PF

´ps,Cupidqs q ´ ps,Fepidqs q s.t.

pidqs qJT idqs ` 2 t
J
idqslooooooooooomooooooooooon

«mmpidqs q

´mm,ref “ 0

Solution set

MTPLpidqs , ωp, . . . q :“
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idqs P R2
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pidqs qJML i
dq
s ` 2mJ

Li
dq
s ` µL “ 0

(

Optimal reference currents ( )

idqs,MTPL “ MTPL X Tpmm,refq
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OFTC with analytical ORCC: Operation strategies
Maximum Current (MC @ 2 ¨ ωm,R): Reference torque not feasible
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Optimization problem

max
i
dq
s PF

|pmmpidqs qq| s.t.

signpmmq “ signpmm,refq

Feasible set

MCpidqs , ωp, . . . , pus,max,pıs,maxq :“
Vppus,maxq X BIppıs,maxq

Optimal current reference ( )

idqs,MC “ BVppus,maxq X BIppıs,maxq
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OFTC with analytical ORCC: Operation strategies
Maximum Current extended (MCext @ 1 ¨ ωm,R): Reference torque feasible
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Optimization problem

max
i
dq
s PF

|pmmpidqs qq| s.t.

signpmmq “ signpmm,refq

Solution set

MCextpidqs , ωp, . . . , pus,max,pıs,maxq :“
Vppus,maxq X BIppıs,maxq

Optimal current reference ( )

idqs,MCext
“ Tpmm,refq X BIppıs,maxq

with ids,MTPL ă ids,MCext
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OFTC with analytical ORCC: Operation strategies
Field Weakening (FW @ 1.40 ¨ ωm,R): Reference torque feasible
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Optimization problem

max
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dq
s PF

´ps,Cupidqs q ´ ps,Fepidqs q s.t.

pidqs qJT idqs ` 2 tJidqslooooooooooomooooooooooon
“mmpidqs q

´mm,ref “ 0

Feasible set

FWpidqs , ωp, . . . ,mm,ref , pus,max,pıs,maxq :“
Fppus,max,pıs,maxq X Tpmm,refq

Optimal reference currents ( )

idqs,FW “ BVppus,maxq X Tpmm,refq
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OFTC with analytical ORCC: Operation strategies
Maximum Torque per Voltage (MTPV @ 3.50 ¨ ωm,R): Reference torque not feasible
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OFTC with analytical ORCC: Operation management
Decision tree

Input variables (operating point, linearized quantities, . . . )
i
dq
s , ωp, R

dq
s,Cu, R

dq
s,Fe, ψ

dq

s , L
dq
s ,

mm,ref , pıs,max, pus,max, ϕp, ϑs, ϑr, . . .

Computation of parameters (at actual operating point)
T , t, τpmm,refq, V , v, νppus,maxq, . . . , mm,min, mm,max

Saturation of reference torque (to min/max feasible torque)
mm,ref :“ sat

mm,max
mm,min

pmm,refq

idqs,MTPL P F

ids,MTPLă ids,MCext
^

idqs,MCext
P F

idqs,FW P F

idqs,MTPV P F

MC
idqs,ref “ idqs,MC

MTPV
idqs,ref “ idqs,MTPV

MCext

idqs,ref “ idqs,MCext

FW
idqs,ref “ idqs,FW

MTPL
idqs,ref “ idqs,MTPL

yes no

no yes

yes

no

no

yes
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OFTC with analytical ORCC: Implementation results
Exemplary laboratory setup

Reluctance SM (RSM) and Permanent-magnet SM Real-time system and VSIs

Host PC (rapid prototyping)
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OFTC with analytical ORCC: Implementation results
RSM (9.6 kW@1 500 rpm): Nonlinear maps of torque, flux linkages and differential inductances
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OFTC with analytical ORCC: Implementation results
RSM (9.6 kW@1 500 rpm): Comparison of numerical and analytical solutions for MTPC
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OFTC with analytical ORCC: Implementation results
RSM (9.6 kW@1 500 rpm): Comparison of computational load (Euler’s solution for fourth-order polynomials)
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‚ Average execution times µn “ 43.4 ¨ 10
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s and µa “ 7.23 ¨ 10
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OFTC with analytical ORCC: Implementation results
PME-RSM (4.5 kW@1 500 rpm): Implementation by colleagues [max

´
L
d
s pi

dq
s q{L

q
s pi

dq
s q

¯
“ 1.43] [166]

Table III
COMPUTATIONAL TIMES OF THE CONTROL ALGORITHM ON DSP

TMS320F28377S .

parameters constant variable
computational time µs µs

data acquisition + KF 7.3 7.3
coefficients update 2.4 4.2

current/voltage intersections + selection 26.6 35.2
torque intersection + selection 9.7 9.9

modulation signals 3.1 3.1
total 49.1 59.7

Figure 6. Experiment – reference and measured flux and torque
component of the stator current vector in dq-plane (for commanded
electrical rotor speed see Fig. 7)

to the point E and then, when motor accelerates to the
negative command, goes through the point F to the point
G, similarly as in previous case. Next speed reversal to
400 rad/s moves the operation point to H. Change of the
rotor speed moves the operation point to I across the A.
While reference torque goes down, the operating point
J is reached. Between points J and [0,0] is used MTPC
operation strategy. Motor is braked after last reverse to
-400 rad/s.

VI. CONCLUSION

The proposed algorithm is able to compute opti-
mal strategy of operation without any need of pre-
computation. Thus machines with time-varying param-
eters can be operated with instantaneous modification
of the optimal setpoint. Optimal control can thus im-
mediately react to changes in inductance due to satura-
tion of iron or thermal dependency of parameters. We
have proposed solutions to various numerical issues and

Figure 7. Experiment – reference and measured flux and torque
component of the stator current and electrical rotor speed

showed that the algorithm can be implemented and run
on conventional DSP.
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OFTC with analytical ORCC: Implementation results
IPMSM (generator mode): Efficiency enhancements considering iron losses [15]

Energies 2019, 12, 862 15 of 18

maximum efficiency is obtained. Consequently, the influences of inverter and iron losses are also taken
into account. Moreover, errors, such as misalignment of the rotor angle and delay, are compensated for
by this method. The iron losses are the main reason that the measured curves are further to the left
and not where the current vector has its minimum amplitude.

The steady-state electric model of the PMSM with iron losses is shown in Figure 10, where Rd
s,Fe

and Rq
s,Fe are the iron loss resistances [15,16,27]. Due to these resistances, the stator currents are

divided into the magnetization currents ik
s,m=(id

s,m, iq
s,m)>, which cause the torque and the iron loss

currents ik
s,Fe=(id

s,Fe, iq
s,Fe)

>.
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Figure 9. Comparison of the three presented methods. (a) Measured torque contour lines ( ) and
resulting trajectories for the two MTPC methods with linear approximated ( ) and nonlinear ( )
flux linkages and the measured trajectories with the maximum efficiency for different shaft speeds
of 100 rpm ( ), 200 rpm ( ), and 300 rpm ( ) in the (d,q)-plane. (b) Efficiency ( ) for a
shaft speed of 300 rpm and a constant torque of −15 Nm and the two points of MTPC for linear
approximated ( ) and nonlinear ( ) flux linkages and the point of maximum efficiency ( ).
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Figure 10. Steady-state electric model of the Permanent-Magnet Synchronous Machine (PMSM) with
iron losses.

The voltage over the iron loss resistances depends on the rotor speed and the flux linkages. The
flux linkages change with the magnetization currents, which, in turn, affects the voltage and thus the
iron losses with

PFe = Pd
Fe + Pq

Fe =

(
ω ψ

q
s

)2

Rd
s,Fe

+

(
ω ψd

s

)2

Rd
s,Fe

. (23)

As shown in Figure 5a,b, the flux linkage ψd
s is reduced when the current id

s becomes more negative.
With a reduced flux linkage ψd

s , the iron loss Pq
Fe reduces as well. Therefore, it makes senses to allow

more copper losses if iron losses, and thus the overall losses, are reduced.
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OFTC with analytical ORCC: Implementation results
IPMSM (3.9 kW@5 500 rpm): Nonlinear maps of torque, flux linkages, differential inductances and iron resistance
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OFTC with analytical ORCC: Implementation results
IPMSM (3.9 kW@5 500 rpm): Animation

MTPL [ ]

MCext [ ]

MC [ ]

MTPV [ ]

FW [ ]
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OFTC with analytical ORCC: Implementation results
IPMSM (3.9 kW@5 500 rpm): Comparison of MTPL [ ] & MTPC [ ] for four operating points (OPs)

OP Speed Torque
B11 30%nm,R 30%mm,R

B12 30%nm,R 100%mm,R

B21 100%nm,R 30%mm,R

B22 100%nm,R 100%mm,R

‚ Copper losses increase with torque

‚ Iron losses increase with speed and torque

‚ MTPL outperforms MTPC for three OPs (equal for B12)

‚ highest efficiency enhancement for high speeds and low(er)
torque (i.e., B21 with ∆ηm ą 2%)
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2 Advanced optimal feedforward torque control (OFTC) and operation
management of electrical drives

Motivation
Problem statement and proposed solution
OFTC with analytical ORCC

Analytical computation
Operation strategies
Operation management and decision tree
Implementation results

OFTC with ANN-based ORCC
Overview
Artificial Neural Network Design
Implementation results
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OFTC with ANN-based ORCC: Overview
Optimal feedforward torque control (OFTC) with ANN-based ORCC within the control system
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OFTC with ANN-based ORCC: Artificial Neural Network Design
Used ANN topology
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OFTC with ANN-based ORCC: Artificial Neural Network Design
Possible and used ANN activation function
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OFTC with ANN-based ORCC: Artificial Neural Network Design
ANN training and validation
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OFTC with ANN-based ORCC: Artificial Neural Network Design
Estimation accuracy (norm of estimation error) versus floating point operations
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OFTC with ANN-based ORCC: Implementation results
Time series

(a) OFTC with analytical ORCC (OFTCANA). (b) ANN-based OFTC (OFTCANN).
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OFTC with ANN-based ORCC: Implementation results
Speed-torque map
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(a) Speed-torque map (OFTCANA). (b) Speed-torque map (OFTCANN).

(c) Current locus (OFTCANA). (d) Current locus (OFTCANN).
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OFTC with ANN-based ORCC: Implementation results
Performance comparison and execution times

Performance measure X=OFTCLUT X=OFTCNUM X=OFTCANA X=OFTCANN
ş |ids,ref,OFTCNLP

´ ids,ref,X|dt 0.176As 0.186As 0.384As 0.227As

ş |iqs,ref,OFTCNLP
´ iqs,ref,X|dt 0.195As 0.207As 0.256As 0.213As

ş |mref,X ´mm|dt 0.018Nms 0.017Nms 0.026Nms 0.020Nms

ş |pus,max ´ ∥udqs,ref,X∥|dt 0.445Vs 0.446Vs 0.454Vs 0.459Vs

ş |pıs,max ´ ∥idqs,ref,X∥|dt 0.010As 0.000As 0.000As 0.059As

ş |nm,ref ´ nm,X|dt 752.4 s
min 750.9 s

min 752.6 s
min 757.8 s

min

texec,X 2 734.782µs 448.745µs 439.671µs 5.855µs
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Outline

3 Conclusion
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Conclusion
Summary and future work

To take home
‚ Unified framework for OFTC with analytical ORCC for MTPL (MTPC), FW, MCpextq & MTPV (MTPF)

based on [102, 105, 106, 131, 167] and [168, Chapt. 6.9]
˝ Sequential quadratic optimization problem (online linearization, iteration, etc.),
˝ Finding intersection point of two quadrics (ellipses, hyperbolas, etc.)

‚ Novel OFTC with analytical but ANN-based ORCC (no decision tree required) [24]
‚ Performance aspects for both approaches:

˝ Consideration of Rs ‰ 0, Rs,Fe ‰ 0 and Ls,m ‰ 0 and current, speed, angle & temperature dependency (all
feasible and simultaneously)

˝ fast(er) and more accurate computation (ANN the fastest)
˝ applicable in real-world (e.g. nonlinear RSM, PME-RSM or IPMSM; also IMs or DFIMs or EESM)

Future work
‚ more extensive experimental validation

‚ impact of (parameter/modelling/alignment) uncertainties

‚ consideration of rotor iron losses (e.g. for IMs), current transients and multi-phase machines

‚ combination with minimization of conduction and switching losses [169]
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Abstract: A novel Artificial Neural Network (ANN) Based Optimal Feedforward Torque Control
(OFTC) strategy is proposed which, after proper ANN design, training and validation, allows
to analytically compute the optimal reference currents (minimizing copper and iron losses) for
Interior Permanent Magnet Synchronous Machines (IPMSMs) with highly operating point dependent
nonlinear electric and magnetic characteristics. In contrast to conventional OFTC, which either utilizes
large look-up tables (LUTs; with more than three input parameters) or computes the optimal reference
currents numerically or analytically but iteratively (due to the necessary online linearization), the
proposed ANN-based OFTC strategy does not require iterations nor a decision tree to find the
optimal operation strategy such as e.g., Maximum Torque per Losses (MTPL), Maximum Current
(MC) or Field Weakening (FW). Therefore, it is (much) faster and easier to implement while (i) still
machine nonlinearities and nonidealities such as e.g., magnetic cross-coupling and saturation and
speed-dependent iron losses can be considered and (ii) very accurate optimal reference currents
are obtained. Comprehensive simulation results for a real and highly nonlinear IPMSM clearly
show these benefits of the proposed ANN-based OFTC approach compared to conventional OFTC
strategies using LUT-based, numerical or analytical computation of the reference currents.

Keywords: electrical drive control system; operation management; optimal feedforward torque
control; optimal reference current computation; transformer-like nonlinear machine model;
artificial neural network; synchronous motor; interior permanent magnet synchronous machine;
machine learning

Notation

N,R: natural, real numbers; x :=(x1, . . . , xn)
> ∈ Rn: column vector, n ∈ N where “>”

and “:=” mean “transposed” and “is defined as”, resp.; a>b := a1b1 + · · ·+ anbn: scalar

product of vectors a & b; ‖x‖ :=
√

x>x =
√

x2
1 + · · ·+ x2

n: Euclidean norm of x; X ∈
Rn×n: matrix (n rows & columns); X−1, X−>: inverse, inverse transpose of X (if exist),
resp.; In := diag(1, . . . , 1) ∈ Rn×n: identity matrix; 0n := (0,. . ., 0)> ∈ Rn: zero vector;
J :=

[
0 −1
1 0

]
: rotation matrix (by π

2 ).

Remark: All physical quantities are introduced and explained in the text to ease reading.

1. Introduction
1.1. Motivation

Electric machines are widely used in plenty of applications for manufacturing, grind-
ing, pumping or in robots, electric vehicles, wind turbines or conventional power plants.

Energies 2022, 15, 1838. https://doi.org/10.3390/en15051838 https://www.mdpi.com/journal/energies
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ABSTRACT
A unified theory for optimal feedforward torque control of anisotropic synchronous machines with
non-negligible stator resistance andmutual inductance is presented which allows to analytically com-
pute (1) the optimal direct and quadrature reference currents for all operating strategies, such asmax-
imum torque per current (MTPC), maximum current, field weakening, maximum torque per voltage
(MTPV) or maximum torque per flux (MTPF), and (2) the transition points indicating when to switch
between the operating strategies due to speed, voltage or current constraints. The analytical solu-
tions allow for an (almost) instantaneous selection and computation of actual operation strategy
and corresponding reference currents. Numerical methods (approximating these solutions only) are
no longer required. The unified theory is based on one simple idea: all optimisation problems, their
respective constraints and the computation of the intersection point(s) of voltage ellipse, current cir-
cle or torque, MTPC, MTPV, MTPF hyperbolas are reformulated implicitly as quadrics which allows to
invoke the Lagrangian formalism and to find the roots of fourth-order polynomials analytically. The
proposed theory is suitable for any anisotropic synchronousmachine. Implementation andmeasure-
ment results illustrate effectiveness and applicability of the theoretical findings in real world.

Notation

N, R, C: natural, real, complex numbers. x :=
(x1, . . . , xn)� ∈ Rn: column vector, n ∈ N where ‘�’ and
‘:=’ mean ‘transposed’ (interchanging rows and columns
of a matrix or vector) and ‘is defined as’, respectively. 0n ∈
Rn: zero vector. a�b := a1b1 + · · · + anbn: scalar product
of the vectors a := (a1, . . . , an)� and b := (b1, . . . , bn)�.
‖x‖ :=

√
x�x = √x21 + · · · + x2n: Euclidean norm

of x. A ∈ Rn×n: (square) matrix with n rows and
columns. A−1: inverse of A (if exists). A−�: inverse
transpose of A (if exists). det(A): determinant of A,
spec(A): spectrum of A (the set of the eigenvalues
of A). In ∈ Rn×n := diag(1, . . . , 1): identity matrix.
On×p ∈ Rn×p: zero matrix, n, p ∈ N.

Tp(φk) = [ cos(φk ) − sin(φk )

sin(φk ) cos(φk )
]: park transformation

matrix (with electrical angle φk) and J := Tp(π/2) =
[ 0 −1
1 0 ]: rotation matrix (counter-clockwise rotation by π

2 ;

CONTACT Christoph M. Hackl christoph.hackl@tum.de
*Authors are in alphabetical order and contributed equally to the paper.

see e.g. Dirscherl, Hackl, & Schechner, 2015; Teodorescu,
Liserre, & Rodríguez, 2011). ‘s.t.’: subject to (optimisa-
tion with constraints). j: imaginary unit with j2 = √−1,
‘ !=’: must equal. X�Y: intersection of the sets X and Y (in
this paper: X, Y ⊂ R2).

1. Introduction

1.1 Motivation

Energy shortage and environmental impacts prompted
engineers to improve the efficiency of electric drives;
especially when studies indicated that electric machines
consume more than half of the globally generated elec-
tricity (de Almeida, Ferreira, & Fong, 2011). Accordingly,
major research and development advancements in the
control and modelling of electric drives have been over-
seen. Special focus was set on permanent-magnet (PM)

©  The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
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reference currents considering copper and iron losses
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Abstract—The unified theory introduced in [1] allows to solve
analytically the optimal feedforward torque control (OFTC)
problem of anisotropic synchronous machines (SMs). In this
paper, the theory is extended by considering relevant machine
nonlinearities and incorporating copper and iron losses, thus
minimizing the overall (steady-state) losses in the machine.
Instead of the well known maximum torque per current (MTPC)
operation strategy, maximum torque per losses (MTPL) is realized.
The unified theory for the derivation of the analytical solution is
briefly recapitulated. Moreover, current and speed dependent iron
losses, as well as magnetic saturation and cross-coupling effects
are considered. The resulting nonlinear optimization problem
is solved via online linearization of the relevant expressions.
The linearization is exemplified for flux linkages and machine
torque, respectively. Furthermore, a decision tree is presented,
which guarantees an optimal operation management and smooth
transitions between all operation strategies such as MTPL, field
weakening (FW), maximum current (MC) and maximum torque
per voltage (MTPV). Finally, the extended unified theory is
validated in simulations for a highly nonlinear SM.

Index Terms—maximum torque per losses (MTPL), maximum
torque per voltage (MTPV), maximum current (MC), field weak-
ening (FW), analytical solution, efficiency, copper & iron losses,
anisotropy, synchronous machine, quadrics, quartics, Lagrangian
optimization, operation management

Notation N,R: natural, real numbers. x :=
(x1, . . . , xn)> ∈ Rn: column vector, n ∈ N where “>”
and “:=” mean “transposed” and “is defined as”, respectively.
a>b := a1b1 + · · · + anbn: scalar product of vectors a

and b. ‖x‖ :=
√
x>x =

√
x2

1 + · · ·+ x2
n: Euclidean

norm of x. X ∈ Rn×m: matrix with n rows and m
columns. In ∈ Rn×n := diag(1, . . . , 1): identity matrix.
On×m ∈ Rn×m: zero matrix. 0n ∈ Rn: zero vector.
Tp(φp) =

[
cos(φp) − sin(φp)

sin(φp) cos(φp)

]
: Park transformation matrix with

angle φp ∈ R and J := Tp(π/2) =
[
0 −1

1 0

]
: counter-clock

wise rotation matrix (by π
2 ). “s.t.”: subject to (optimization

with constraints). X ∩ Y: intersection of sets X, Y ⊂ R2.

I. INTRODUCTION

In pursuit of reducing the global energy demand, maximiz-
ing efficiency of electric machines and drives is of paramount
importance, as more than half of today’s generated elec-
tricity is consumed by electric machinery [2]. In particular

for synchronous machines (SMs) with anisotropic rotor de-
signs, e.g. interior permanent magnet synchronous machines
(IPMSMs), reluctance synchronous machines (RSMs) or PM-
assisted RMSs (PMA-RSMs), efficiency can be increased by
optimal feedforward torque control (OFTC) [3, 4].

The main idea of OFTC is to exploit the ambiguity in the
selection of the stator current’s direct and quadrature compo-
nents (producing the same amount of torque), such that losses
are minimized while physical constraints are satisfied (e.g.
current or voltage limits). Depending on the actual operating
conditions, different optimization problems may be formulated
leading to respective operation strategies, such as maximum
torque per current (MTPC, also known as MTPA), maximum
torque per voltage (MTPV), maximum current (MC) or field
weakening (FW). Solutions to those optimization problems
may be found either analytically or numerically.

Until recently, publications providing analytical solutions
either neglected resistive components or assumed magnetic
linearity (or both) in the problem formulation [5–8]. These
unnecessary simplifications were overcome in [1] (and partly
in [9–11]), where a unified theory for OFTC was proposed,
offering analytical solutions for all aforementioned operation
strategies while considering stator resistance and magnetic
nonlinearity to minimize copper losses (only). The main idea
was to reformulate the optimization problems implicitly using
quadrics and finding the optimal solution by intersecting
two respective quadrics. The intersection point(s) of any two
quadrics can be found analytically by solving a fourth-order
polynomial (quartic equation). In a more recent study [12],
the solution of the intersection problem, as formulated in [1],
was found numerically offering a slightly faster solution. The
results, however, depend on the implementation of the root
finding algorithm. In [13], an efficient Newton-Raphson-based
search algorithm was used to find the optimal solutions as pro-
posed in [1] online. Other approaches for MTPA(=MTPC in
this paper) control of IPMSMs have been developed lately, e.g.
based on virtual signal injection control [14], artificial neu-
ral networks [15] or a variable-equivalent-parameter MTPA
control law [16]. In these publications, magnetic nonlinearity
is accounted for by considering the current dependency of
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Abstract—In order to analytically solve the optimal feed-
forward torque control (OFTC) problem of induction machines
(IMs), the unified theory for synchronous machine introduced
in [1] is extended by considering relevant IM nonlinearities and
incorporating stator and rotor copper losses. Instead of the well
known Maximum Torque per (stator) Current (MTPC) operation
strategy, Maximum Torque per (copper) Losses (MTPLCu) is
realized and extended by the Maximum (rotor) Current (MCr, ext)
strategy due to stator and rotor current limitations. Modeling
magnetic saturation and cross-coupling effects leads to a con-
strained nonlinear optimization problem which is solved based
on the idea of sequential quadratic programming (SQP). The
second order Taylor approximations are formulated in implicit
form as quadrics. Applying the Lagrangian formalism to the
quadratic problem leads to analytical solution for the optimal
rotor currents. For a doubly-fed induction machine (DFIM), a
decision tree for optimal operation management is presented and
the OFTC is validated in simulations for a real nonlinear IM.

Index Terms—efficiency, copper losses, (doubly-fed) induction
machine, Maximum Torque per (copper) Losses (MTPLCu),
Maximum (rotor) Current (MCr, ext), analytical solution, se-
quential quadratic programming (SQP), quadrics, Lagrangian
optimization, operation management

Notation N,R: natural, real numbers. x :=
(x1, . . . , xn)> ∈ Rn: column vector, n ∈ N where “>”
and “:=” mean “transposed” and “is defined as”, respectively.
a>b := a1b1 + · · · + anbn: scalar product of vectors a

and b. ‖x‖ :=
√
x>x =

√
x2

1 + · · ·+ x2
n: Euclidean

norm of x. X ∈ Rn×m: matrix with n rows and m
columns. In ∈ Rn×n := diag(1, . . . , 1): identity matrix.
On×m ∈ Rn×m: zero matrix. 0n ∈ Rn: zero vector. Park
transformation angle φp ∈ R and J :=

[
0 −1

1 0

]
: counter-clock

wise rotation matrix by π
2 . “s. t.”: subject to (optimization

with constraints). X ∩ Y: intersection of sets X, Y ⊂ R2.

I. INTRODUCTION

About 50–70 % of all electricity is consumed by electric
machines with an overwhelming share of 90 % induction
machines (IMs) [2]. Moreover, IMs are also used for converter-
based power generation which is the focus of this paper:
Doubly-fed induction machines (DFIMs) with grid-connected
stator and inverter-fed rotor as widely used in wind en-
ergy conversion systems (WECS) [3]. However, the proposed

generic approach can also be applied to other types of inverter-
fed IMs, such as squirrel-cage induction machines (SCIMs).

The highest priority of the OFTC is to provide the reference
torque while minimizing losses. In a wide operating range,
there usually exist (infinitely many) different combinations of
reference currents resulting in the same torque. Thus, an opti-
mal reference current computation (ORCC) is desirable which
minimizes the current-dependent IM losses while reaching the
reference torque and taking into account operating (e.g. current
& voltage) limits. To do so, this paper proposes a physics-
based nonlinear IM model for analytical ORCC.

In [4–7] the efficiency of DFIM-based WECS is increased
based on an improved reactive power sharing between the
rotor and the stator circuit considering the dominant copper
losses (also iron losses in [4], [6] and converter losses in [6]).
Neglecting the impact of the active rotor current, the reactive
rotor current calculation in [6] results in a power saving of
15 % of the total losses for low load operation. In [8], a new
structure for WECS is proposed which also allows to regulate
the DFIM stator voltage without an additional converter for
further efficiency improvement based on flux weakening.
However, all analytical reference current computations stated
above neglect nonlinear saturation and cross-coupling effects
and operating limits.

In [9], saturation effects are modeled by a current depen-
dent but scalar magnetizing inductance. The numerically and
offline calculated reference currents are saved in lookup-tables
(LUTs) for OFTC. In [10], an IM identification method based
on measurements is used to extract optimal reference current
LUTs. As this method requires expensive torque sensors, [10]
proposes the MTPC strategy as alternative. However, MTPC
only minimizes the copper losses of the primary (inverter-
fed) side and not of the secondary (short-circuited or grid-
connected) side. Moreover, the step-wise or numerical calcu-
lations of the LUT-based approaches result in limited accuracy.
Since the copper and iron losses depend on temperatures
at different locations, [9] proposes to use multiple LUTs
accepting an significantly increased computational effort due
to increased dimensions of the LUTs.

To the best knowledge of the authors, all existing approaches
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6.9 Optimale Betriebsführung von nichtlinearen
Synchronmaschinen
C. M. Hackl, J. Kullick, N. Monzen

Der folgende Abschnitt basiert auf den Publikationen [HH16; Eld+16; EHK16;
Eld+17b; Hac+17; Eld+17a]. Darin wurde die erste allgemeine Theorie zur analy-
tischen Berechnung der optimalen (verlustminimierenden) Sollströme für anisotro-
pe Synchronmaschinen mit konstanter Erregung vorgestellt. Die weithin verbrei-
teten und vereinfachenden Annahmen wie z. B. die Vernachlässigung des Stator-
widerstandes oder der magnetischen Kreuzkopplung konnten aufgehoben werden.
Zusätzlich erlaubt die Theorie die Berücksichtigung von Eisenverlusten und Nicht-
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